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Abstract This article examines the validity of a model to
explain how humans learn to perform movements in envi-
ronments with novel dynamics, including unstable dynamics
typical of tool use. In this model, a simple rule specifies how
the activation of each muscle is adapted from one move-
ment to the next. Simulations of multijoint arm movements
with a neuromuscular plant that incorporates neural delays,
reflexes, and signal-dependent noise, demonstrate that the
controller is able to compensate for changing internal or
environment dynamics and noise properties. The computa-
tional model adapts by learning both the appropriate forces
and required limb impedance to compensate precisely for
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forces and instabilities in arbitrary directions with patterns
similar to those observed in motor learning experiments. It
learns to regulate reciprocal activation and co-activation in a
redundant muscle system during repeated movements with-
out requiring any explicit transformation from hand to mus-
cle space. Independent error-driven change in the activation
of each muscle results in a coordinated control of the redun-
dant muscle system and in a behavior that reduces instability,
systematic error, and energy.

Keywords Hybrid force-impedance control · Learning ·
Iterative and nonlinear adaptive control · End-effector
redundancy · Muscle-space · Optimization

1 Introduction

While recent studies have shown that tool usage is not res-
tricted to human activities (De Waal 1999; Weir et al. 2002),
the exceptional capability of humans to learn to use a wide
array of tools is still poorly understood. For example, how is it
possible to create intricate sculptures, which require the abil-
ity to control the direction and magnitude of the force applied
to a chisel as well as the ability to stabilize the chisel in the
face of irregularities in the resistance of the material and noise
in the commands sent to the muscles (Slifkin and Newell
1999; Osu et al. 2004)? Skills which require compensation
for mechanical instability, such as sculpting, appear particu-
larly difficult to learn as any small perturbation can lead to
unpredictable and inconsistent outcomes (Burdet et al. 2006).

In order to perform these activities successfully, the central
nervous system (CNS) must learn to compensate for mechan-
ical instability as well as interaction forces arising from the
environment (Burdet et al. 2001; Franklin et al. 2003a). What
is the computational mechanism of this learning? Optimiza-
tion algorithms such as used in (Burdet and Milner 1998;
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Harris and Wolpert 1998; Stroeve 1999; Todorov and Jordan
2002; Guigon et al. 2007; Trainin et al. 2007; Izawa et al.
2008) only predict final learning outcomes, while models
created to predict gradual changes of force during adaptation
(Kawato et al. 1987; Katayama and Kawato 1993; Gribble
and Ostry 2000; Thoroughman and Shadmehr 2000; Donchin
et al. 2003; Emken et al. 2007) do not possess a mechanism
to counteract mechanical instability and do not accurately
predict the evolution of muscle activation observed during
human motor learning (Franklin et al. 2003b).

We have recently introduced an algorithm which accounts
for the ability of the CNS to improve motor skills with prac-
tice by iteratively adjusting motor commands (Franklin et
al. 2008). This model is based on a simple V-shaped learn-
ing function which stipulates how feedforward commands
to individual muscles are adjusted based on error, from one
movement to the next. Computer simulations of movements
which require compensation for instability normal to the tra-
jectory have demonstrated that this algorithm can modify
patterns of muscle activation during training to precisely
counteract the effects of unstable environmental dynamics
(Burdet et al. 2001; Franklin et al. 2003b).

However, the model was not rigorously tested in Franklin
et al. (2008). For example, many activities require simulta-
neous control of force and impedance. Since this has been
investigated empirically (Osu et al. 2003), data exist for com-
parison of model predictions with experimental observations.
Similarly, model predictions can be compared to experimen-
tal observations in studies where the strength (Franklin et al.
2004) or the direction (Franklin et al. 2007a) of an instability
was varied. In order to test the general validity of this model,
it is necessary to examine its ability to accurately predict
how patterns of muscle activation are adjusted under a broad
range of conditions.

Given that there is considerable redundancy in the mus-
culoskeletal system, does our model select and use muscles
in the same way as the central nervous system? In order to
address this question, we have chosen to examine a multi-
joint arm movement constrained between two target positions
(Scheidt et al. 2000). Since the intended movement could
be produced by many combinations of the shoulder, elbow
and biarticular flexor and extensor muscles this provides an
appropriate test of the model.

This article first defines the model thoroughly, and inves-
tigates its generality by testing the capacity to adapt patterns
of muscle activation for movements in representative force
fields. We examine predictions for concurrent learning of
force and impedance, the ability of the algorithm to deal
with a redundant muscle system and to optimize impedance
for different levels and directions of instability.

The model parameters are identified under one condition,
after which computer simulations of learning are performed
and compared to experimental data. We then analyze the

outcomes, as well as the predicted transients of learning in
various dynamic environments, and examine the change of
patterns of muscle tension, reciprocal activation and co-acti-
vation, as well as the trajectories and impedance which
accompany this learning, and compare the features of the
simulated results with the experimental data.

2 Heuristics of motor adaptation

Movements repeated under similar conditions are charac-
terized by regular patterns. We interpret these movement
features as the output of mechanical plant controlled by
descending feedforward motor commands. The muscle acti-
vation produced by learned feedforward commands is com-
bined with activation arising from sensory feedback loops to
enable us to perform skillful movements despite long sen-
sory delays. For example, when environmental dynamics are
unexpectedly altered during fast reaching movements, the
trajectory is markedly disturbed immediately following the
alteration, but it gradually recovers in a convergent manner
with repetition. This section presents and analyzes the results
of previous experiments on motor adaptation to determine
how feedforward commands are modified from one move-
ment to the next (Burdet et al. 2001; Osu et al. 2003; Franklin
et al. 2003b).

Figure 1 illustrates the evolution of trajectories and muscle
activation during learning of a stable interaction produced
by a velocity-dependent force field (VF, Fig. 1a), and dur-
ing learning of an unstable interaction produced by a position
dependent divergent force field (DF, Fig. 1b). Trajectories for
reaching movements ahead of the body in the VF and DF are
compared to null field (NF) movements which are approx-
imately straight (Fig. 1c, d, e). The corresponding signed
errors, the directional area between the paths of each VF or
DF trajectory and the mean NF trajectory for 5 subjects are
shown in Fig. 1f, g.

In the velocity-dependent force field (VF) the trajectories
during initial trials, which deviate to the left as a consequence
of the effect of the velocity-dependent force, converge in a
monotonic fashion to the NF mean trajectory (Fig. 1f). This
indicates that the CNS reduces kinematic error by compensat-
ing for the perturbing effect of the environmental dynamics.

The evolution is more complex in an unstable interaction
(DF). Due to motor noise, the first trial deviates left or right
from the path of the mean trajectory (Fig. 1g). The instability
amplifies the deviation, and the hand is pushed away from
the target. Subsequent trials in the DF alternate left and right
from the NF trajectory, and later movements slowly converge
to it. The evolution in the initial trials suggests that, in the
unstable condition also, the control is modified to reduce the
kinematic error from trial to trial. After a trial in which
the movement deviated to the left, the controller modifies the
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Fig. 1 Adaptation to
representative stable and
unstable dynamics (Osu et al.
2003). d Shows point-to-point
movements in the null field
(NF). In the velocity-dependent
force field (VF), the force
exerted on the hand is always in
the same direction (a). In
contrast, the interaction with the
unstable position dependent
divergent force field (DF) is
unpredictable due to motor
noise (b). In the VF (c), the CNS
can monotonically correct for
the disturbance, while in the DF
(e) the corrective actions lead to
errors that alternate between the
left and right of a straight line to
the target (d). f, g show the mean
integrated hand path error of
five subjects in the first 20 trials,
(h, i) a fit with two exponential
functions of the evolution of
(rectified and integrated) muscle
activity during learning
(Franklin et al. 2003b)
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feedforward command to push to the right on next trial. This
results in a movement deviating to the right. Consequently,
the controller then modifies the feedforward command to
push to the left, etc., resulting in the alternate movement pat-
terns observed.

It is not obvious how the initial alternating behavior leads
to stability and how the movements eventually come to resem-
ble those made in the NF. If the CNS attempted to correct for

the error experienced in one trial by producing an opposing
force on the next trial the hand path should continue to alter-
nate to the right and left of the mean trajectory (Fig. 2a). On
average, there would be no modification of torque with this
strategy if the movements were distributed symmetrically on
each side. Simulation of this strategy in the DF (Burdet et
al. 2006), shown in Fig. 2c, confirms that it cannot lead to
movements that resemble NF movements.
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Fig. 2 Analysis of iterative
learning principle in unstable
DF dynamics performed in joint
space (b) versus muscle space
(d). The signed areas are defined
in (a). c Shows that simulation
of joint space iterative learning
does not lead to successful
performance even after 100
trials (Burdet et al. 2006)
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Understanding how learning occurs under conditions of
unstable dynamics requires analysis in muscle space.
Consider two antagonistic muscles spanning a joint and pro-
ducing torque in opposite directions (Fig. 2b). Muscles can
only pull, i.e., muscle tension is always positive. Assuming
that movement error on one trial is compensated by an oppos-
ing force on next trial, errors to the left and right from the
mean trajectory will lead to a pattern of alternating increases
in activation in two muscles, i.e., to co-activation (Fig. 2d).
As muscle impedance increases with activation (Gomi and
Osu 1998), compensation of the external force coupled with
the instability will increase impedance and make the motion
more stable.

Stability is also brought about by an increase in muscle
activity in response to shortening in the previous movement.
We can observe this particularly well in the adaptation to
the VF shown in Fig. 1h, though the same process occurs in
unstable interactions (Franklin et al. 2008). In the VF, activ-
ity increases in the biceps brachii, though only the antagonist
triceps long head was stretched as the trajectory remained to
the left of the NF path. Thus, the increase of muscle activity
both after shortening and stretch stiffen the arm gradually,
thereby increasing stability during movement, and improve
performance.

However, muscle activity cannot increase indefinitely. In
fact, examination of EMG during learning (Fig. 1h, i) shows
that, both under stable and unstable conditions, muscle activ-
ity gradually decreases after an initial increase in all muscles
(Franklin et al. 2003b). Direct measurement of stiffness dur-
ing different phases of learning confirms that superfluous
impedance is gradually eliminated (Franklin et al. 2004).

3 Model

As analyzed in previous section, the observations of learning
patterns in Shadmehr and Mussa-Ivaldi (1994), Burdet et al.
(2001), Franklin et al. (2003b), Milner and Franklin (2005)
suggest the following principles of motor adaptation:

1. Motor commands in order to perform a desired action are
composed of both the feedforward command, defined as
the component of the motor command learned by repeat-
ing an activity, and the feedback command.

2. The feedforward command is updated from one move-
ment to the next in muscle space as changes in the neural
activation of muscles.

3. This modification of the feedforward command tends to
reduce motion error experienced in the previous move-
ment.

4. Either muscle stretch or shortening leads to augmenta-
tion of muscle activity on the following movement.

5. Muscle activation is reduced with learning.

Formulating the first principle in quantitative terms, we
assume that each of the motor commands w ≡ (w1 · · ·wi · · ·
wN )T for the N muscles involved in a movement is composed
of a feedforward term u, corresponding to learned dynamics,
and a feedback term v:

w = u + v. (1)

The neural feedback or reflex term v depends on motion
error e. In the simulation of this article, it was modeled as

v(t) = r (e(t − φ) + rd ė(t − φ)) (2)

where r, rd > 0, and φ are the feedback delays. e is the dif-
ference between the expected position and the position that
results from the interaction with the environment, in coordi-
nates of muscle length. A filtered version of this signal will
be available to the CNS through afferent feedback (such as
muscle spindles). In order to perform the simulations of this
article, we assumed a reference trajectory λo, and that e is
the difference between the actual and this reference muscle
length:

e = λ − λo. (3)

The feedforward motor command for each muscle i is then
updated from one trial uk

i to the next uk+1
i by (considering

that it must remain positive):

uk+1
i (t) ≡

[
uk

i (t) + � uk
i (t + φ)

]
+ , [·]+ ≡ max{·, 0}

� uk
i (t) = αεk

i,+(t) + βεk
i,−(t) − γ, [·]− ≡ [− ·]+

εk
i (t) = ek

i (t) + gd ėk
i (t), α > β > 0, γ, gd > 0, (4)

where ei (t) is the stretch/shortening in muscle i at time t ,
and �u is phase advanced by φ > 0, which is equal to the
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Fig. 3 The learning algorithm.
a The control diagram illustrates
local learning in each muscle
corresponding to the stated
principles of motor adaptation,
which control force and
impedance in the limbs at the
point of contact with the
environment. b The function
used to adapt activation
independently in each muscle
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feedback delay. This learning function, which governs how
the activity of each muscle is adapted corresponds well to the
adaptation function observed in experimental data (Franklin
et al. 2008). A control diagram of the overall learning is given
in Fig. 3.

We note that the model of Eqs. 1 and 4 does not require
a desired trajectory planed by the CNS, but only an error
signal from the muscle sensors, possibly processed by the
CNS. In order to examine the viability and generality of this
learning controller, simulations were performed under var-
ious conditions for the same forward planar movement as
in the experiments of Burdet et al. (2001), Franklin et al.
(2003a,b). The two-joint six-muscle model used for simu-
lations has redundant muscles and nonlinear dynamics. We
computed adaptation of muscle tension at the output of the
contractile element, i.e., the force produced by muscles on
the skeleton, as described in Appendices A.1–A.3.

The physical model of the arm considered the rigid body
dynamics, muscle intrinsic impedance, neural feedback, and
signal-dependent motor noise as described in Appendices
A.1 and A.2. The parameters for the arm: the limb lengths,
masses and moments of inertia, feedback gains, feedback
delays, and muscle moment arms were selected from the lit-
erature. Muscle stiffness and noise parameters were selected
to produce null field (NF) movements and initial movements
in the VF and the DF of Fig. 1 with trajectories and endpoint
stiffness similar to those recorded experimentally. This same
set of parameters was then used in all simulations.

4 Results

4.1 Concurrent regulation of force and impedance

We first simulated a rotated DF (rDF) and a rotated conver-
gent field (rCF), previously used to study human adaptation
(Osu et al. 2003), as defined by the following equation:

[
Fx

Fy

]
= ζ (x cos θ + (y − 0.31) sin θ)

[
cos θ

sin θ

]
, (5)

where θ ≡ 7o, (Fx, Fy)
T is the force (in Newtons) exerted on

the hand during movement, and (x, y)T is the hand position
relative to the shoulder in meters. ζ = 450 N/m for rDF,
and ζ = −450 N/m for rCF. These force fields are designed
to require the same force along the straight line movement
to the target. However the rDF requires compensation for
the environment instability to succeed in reaching the target
while the rCF defines a stable trajectory.

We see in Fig. 4a, b that the algorithm is able to learn
to compensate for both interactions. In particular, it is able
to acquire the stability necessary to succeed in the unsta-
ble rDF. Furthermore, the after effects occur in the same
direction under both conditions, indicating compensation of
the bias force. This is further supported by the similar joint
torques which were learned in each force field Fig. 4d. What
is most critical for the validity of the model is that the after-
effect trajectories deviate less in rDF, as was observed in the
experimental results (Osu et al. 2003), indicating larger limb
impedance in the rDF (Fig. 4a, b).

Figure 4c shows how the algorithm modified the distri-
bution of integrated lateral errors after learning. The nar-
row distribution in the rCF has a bias which is zeroed with
learning. The broader initial distribution in the rDF (compare
Fig. 4a, b), spreads because the instability amplifies error, and
becomes narrower and unbiased with learning.

4.2 Control of redundancy

Analysis of force adaptation was performed in Scheidt et al.
(2000) by observing the modification of force against the
walls of a virtual channel after a lateral VF
[

Fx

Fy

]
=

[−15 ẏ
0

]
(6)
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Fig. 4 Concurrent regulation of force and impedance. a Adaptation to
the rotated divergent field (rDF). The force field (red) and forces expe-
rienced (dark gray) along the straight line to the target (black line) are
shown at the left. To the right are plotted the simulated trajectories both
early and late in learning, and during aftereffects. b Adaptation to the

rotated convergent field (rCF). c The distribution of (integrated lateral)
hand path errors (Osu et al. 2003) for 100 movements before and after
learning (when the learning factor was set to 0). d The joint torques in
the NF, rDF, and rCF after learning

had been learned (the force is in N and velocity in m/s). The
channel was implemented as a stiff lateral spring with 6000
N/m stiffness and 60 Ns/m damping to avoid oscillations.

Two particularly interesting features of this experiment are
that (i) almost no kinematic error is available for (un)learning
in the channel, and (ii) because of the mechanical constraint
introduced by the channel the end effector’s positioning sys-
tem has considerable redundancy, i.e., this movement could
be driven using various combinations of the shoulder, elbow,
or biarticular flexor and extensor muscles.

Figure 5 shows a gradual decrease of force toward the ini-
tial NF value when the force field is replaced by the channel.
In contrast, the force decreases almost immediately to the ini-
tial NF value when the force field is replaced by the NF, i.e.,
when kinematic error is available to the controller on every
trial. This is similar to the behavior observed in Scheidt et
al. (2000), and suggests that motor learning is guided by the
kinematic error. The rate of decrease of force is somehow
larger in the simulations than that observed in Scheidt et al.
(2000), but similar to recent experimental results (Melendez-
Calderon et al. 2009).

There are several interesting features in the evolution of
the muscle activation predicted by the model. These include
predictions that the activity of shoulder flexors and biartic-
ular muscles increases immediately after the force field is
replaced by the NF, and that this activity decreases gradually
in the NF. It is also interesting to note that the biarticular
extensor activity decreases rapidly when the force field is
replaced by the channel, although the activity of other mus-
cles only gradually decreases. Test performed on these pre-
dictions of the model could be used to validate the choice of
learning parameters.

Another prediction is that stiffness decreases laterally
while repeating movements in the channel, as working against
intrinsic instability is not needed. This is produced mainly by
a decrease of double joint muscle’s activity.

4.3 Impedance compensates precisely for the environment
instability

In order to investigate how the impedance of the arm is
adapted to the impedance of the environment, we first
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below the NF levels as they are no longer required to guide the move-
ment. d The endpoint stiffness ellipses for five different conditions. The
stiffness is reduced in the channel not only relative to the VF but also
relative to the NF

simulate the adaptation in divergent force fields (DFs) while
varying the direction of instability as was done in the exper-
iments of Franklin et al. (2007a). Specifically, we simulate
learning in DFs defined by

[
Fx

Fy

]
= ζ

[
cos θ

sin θ

]
x, (7)

with the force in N, orientations θ = −45◦,0◦,45◦, and 80◦
anticlockwise, and field strengths ζ = 360, 450, 360, and 225
N/m, respectively.

The learning algorithm predicts trial-by-trial changes in
muscle activity (Fig. 6e) consistent with the results of
Franklin et al. (2003b). The level and time course of sim-
ulated muscle activity changes in a similar fashion to muscle
activity recorded during human adaptation. All the muscles
increase activation after the introduction of the force field.
The muscle activity peaks, and gradually reaches a plateau
level, similar to that of the experimental data.

The simulated stiffness after learning (Fig. 6b) corre-
sponds well to the mean stiffness of the subjects in Franklin
et al. (2007a) (Fig. 6a). The orientation, shape, and size of
the stiffness ellipses predicted by the model match the exper-
imental data very well in most cases (Fig. 6c, d).

The analysis of muscle activation reveals that differences
in stiffness are due to differentiated involvement of the mus-
cle pairs spanning the two joints (Fig. 6e), as in the exper-
iment (Franklin et al. 2007a). Both DF0 and DF−45 require
mainly co-activation of the bi-articular muscles to compen-
sate for the instability. However, adaptation to DF45 and DF80

is produced by bi-articular and elbow muscles. DF80 requires
particularly strong co-activation of elbow muscles, which is
consistent with the geometry of these muscles, i.e., displace-
ment along the direction of the instability is resisted primarily
by length changes in these muscles.

We then simulated learning when the strength of the lateral
instability was varied as in Franklin et al. (2004), by using
the field of Eq. 7 with θ = 0 and the field strength ζ = 200,
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stiffness of the subjects in Franklin et al. (2007a). b Simulated endpoint
stiffness of the arm after learning the same five force fields. c A compar-

ison of the orientation of the stiffness ellipse between the experimental
and simulated stiffness. d The shape of the endpoint stiffness ellipse,
defined as the ratio of small to large axes. e Transients of muscle acti-
vation during learning in the environments with instability in various
directions

300, 400, and 500 N/m. We see in Fig. 7 that learned stiff-
ness increases monotonically with the strength of the envi-
ronmental instability as observed experimentally (Franklin
et al. 2004). Net stiffness, the difference between the overall
stiffness and the environmental stiffness, reaches the same
level as in NF independent of the environmental stiffness
level. This means that both the simulated and biological con-
trollers adapt to keep a similar stability margin (of about 300
N/m) under all conditions.

4.4 How does the CNS deal with noise?

The amount of motor noise with which the CNS must contend
varies naturally among healthy individuals and increases with
age (Sturman et al. 2005; Newell et al. 2006). It also increases

in pathological states such as cerebellar disorders. How does
neural control adapt to such differences? Our model can be
used to compare adaptation under conditions of different lev-
els of motor noise. We investigated adaptation to an unstable
force field with an instability normal to the movement direc-
tion, using a divergent force field with θ = 0 and ζ = 450
N/m in Eq. 7.

In our simulations, endpoint stiffness grows with the noise
level both in the NF and the DF (Fig. 8a), due to a generalized
increase in the activation of all muscles. Furthermore, the
increase of the Kxx term is larger in the DF than in the NF
(Fig. 8b), but similar for the other components of the stiff-
ness matrix. Adaptation to the DF requires an increase in
stability along the x-direction, which is achieved by increas-
ing motor commands to muscles which change their length
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Fig. 7 Adaptation to
environments with instability of
different magnitudes. a Mean
endpoint stiffness ellipses from
the data of Franklin et al.
(2004). b Mean and standard
deviations of the experimental
stiffness along the x-axis (Kxx)
and y-axis (Kyy) for each level
of instability (Franklin et al.
2004). The net stiffness is the
difference between the learned
stiffness and the force field
strength. c Simulated endpoint
stiffness ellipses for each level
of instability. d Simulated
stiffness along the x- and y-axes
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in response to disturbances along this direction. In turn, this
increases the (signal-dependent) noise for movements in this
direction, requiring a greater increase in Kxx in the DF than
in the NF. Impedance is able to stabilize the noisy plant as
it grows faster as a function of the motor command than the
motor noise (Selen et al. 2005).

While this increase in endpoint limb stiffness with
increasing internal motor noise has not been experimentally
confirmed, a similar effect has been demonstrated under
movements in the absence of visual feedback (Franklin et al.
2007b). When subjects performed movements in the unstable
environment (DF), the endpoint stiffness was larger under
conditions where visual feedback was absent compared to
when it was present. Our conclusion is that this condition
increased the uncertainty about the current state of the limb,
which is required to modulate the endpoint stiffness along
the trajectory under conditions of environmental instability.
In order to compensate for this increased uncertainty (or
increased sensory noise), the limb stiffness was increased
(Franklin et al. 2007b). Such effects are comparable to the
modeled changes in endpoint stiffness under the conditions
of increased motor noise found here.

5 Discussion

Biological motor control is fundamentally adaptive, and it
is critical to possess predictive tools with similar adapta-
tion properties to understand the mechanisms of impairments
arising from motor disorders and to facilitate rehabilitation
(Emken et al. 2007). The model of motor learning presented
in this article regulates the endpoint force and impedance
of the arm in a manner that is similar to that observed in
humans. It does this by adapting each muscle’s feedforward
command using a few simple principles which we deduced
from observations made during psychophysical experiments.

Trial by trial adaptation was implemented with a V-shaped
function of kinematic error (Franklin et al. 2008), which gen-
erates an increase in muscle activation for a stretched muscle,
a smaller increase in activation for a shortened muscle, and a
decrease in activation for small kinematic errors. This model
is fundamentally different from previous models based on
iterative and adaptive control (Kawato et al. 1987; Katayama
and Kawato 1993; Gribble and Ostry 2000; Thoroughman
and Shadmehr 2000; Donchin et al. 2003; Emken et al. 2007;
Schweighofer et al. 1998; Thoroughman and Taylor 2005)
and corresponding nonlinear adaptive controllers for robots
(Slotine and Li 1991; Bien and Xu 1998; Burdet et al. 1998)
as it is equipped with a mechanism to adapt impedance and
can successfully stabilize unstable dynamics.

The asymmetrical V-shaped adaptation law, Eq. 4, can be
decomposed into an antisymmetric proportional function, a
symmetric function and a negative bias:

� uk = αεk+ + βεk− − γ , α > β > 0, γ > 0 ,

= 1

2
(α + β)|εk | + 1

2
(α − β)εk − γ , (8)

where the muscle index and time have been dropped for sim-
plicity. In this representation, the first term |ε| increases co-
activation in response to deviation, i.e., increases stability;
the second term ε produces a force opposed to the error,
i.e., compensates for systematic error; and the third term −γ

removes superfluous activation. Therefore, the adaptation of
Eq. 4 concurrently increases stability, decreases movement
error, and decreases effort.

The modeled controller used those parameters which were
fixed after matching behavior observed under the NF condi-
tion and during adaptation to the VF used in Franklin et al.
(2003a). It is remarkable that this single set of parameters
leads to successful performance of multijoint reaching arm
movements with features similar to those observed in all the
experiments that we have attempted to simulate (Burdet et al.
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2001; Franklin et al. 2003a,b, 2004, 2007a; Osu et al. 2003;
Scheidt et al. 2000; Melendez-Calderon et al. 2009).

In particular, it was shown to accurately predict the coordi-
nation of muscles required to interact with the novel dynam-
ics characterized by instability in various directions and of
various strength, as illustrated in Figs. 6 and 7, and to predict
how the CNS may adapt to increasing motor noise. We have
seen that the decay rate of force matched the experimental
results of Melendez-Calderon et al. (2009) but was some-
how faster than that found in Scheidt et al. (2000). This may
illustrate the capability of the CNS to modulate the speed
of learning, i.e., the slopes and intercept of our simple algo-
rithm, depending on the errors experienced in previous trials.
Another possible explanation is the finding that there are at
least two interacting adaptive processes with different time
scales which are responsible for motor learning (Smith et al.
2006). Therefore, our model may mainly capture the prop-
erties of the fast adaptive process while the extremely slow
decay of force seen in the experimental condition may result
from the slow adaptive process.

An important aspect of our control algorithm is its abil-
ity to regulate reciprocal activation and co-activation in the
redundant muscle system without requiring any explicit
transformation from hand to muscle space. Movement error
detected by the sensors during repeated movements provides
sufficient information to coordinate the highly redundant
musculoskeletal system and learn to perform movements suc-
cessfully while reducing expenditure of metabolic energy,
i.e., muscle activation, as demonstrated by the results shown
in Fig. 5.

In contrast to previous models based on numerical optimi-
zation (Burdet and Milner 1998; Harris and Wolpert 1998;
Stroeve 1999; Guigon et al. 2007; Trainin et al. 2007) or
(linear) optimal control (Todorov and Jordan 2002; Izawa et
al. 2008), which can be used to predict the behavior after
learning, our model is able to predict how sensory informa-
tion is used to modify the motor commands during the entire
learning process, from one movement to the next. It may
also be used to investigate convergence to a local optimum,

y

x

environmental
force

target

start

ls ms

le me

qe

qs

Fig. 9 Simulations of horizontal arm movements were performed
using the two-joint six-muscle model described in this diagram

which occurs in tasks with multiple optima such as slalom
movements (Todorov and Jordan 1998), or cases when motor
learning does not converge.
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6 Appendix

6.1 Mechanical arm model

The convention we use for the formulae of this section is that
scalars s are italic, while vectors v and matrices M are bold.
Figure 9 presents a schematic of the two-joint six-muscle
model of the arm used in the simulation. The dynamics of
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the arm moving in a horizontal plane while interacting with
the environment is described (in joint space) by:

τRB(q, q̇, q̈) + JT (q) FE = JT
m m (9)

Muscle tensions m are needed to move the limb, i.e., to pro-
duce the rigid-body dynamics τRB and counteract the exter-
nal force FE, where τRB = (τs, τe)

T are the vectors of torque
at the shoulder and elbow joints, respectively, and FE =
(Fx, Fy)

T represents the Cartesian vector of the force exerted
on the hand. This force is transformed into joint torques using
the Jacobian

J(q) =
[−lsss − lesse −lesse

lscs + lecse lecse

]
, (10)

where ss ≡ sin qs , sse ≡ sin(qs + qe) , cs ≡ cos(qs), cse ≡
cos(qs + qe).

τRB(q, q̇, q̈) are the dynamics due to inertia and veloc-
ity-dependent forces, where q = (qs, qe)

T are the vectors of
shoulder and elbow joint angles, q̇ and q̈ its first and second
time derivatives, respectively. The dynamics of a two link
arm model moving in the horizontal plane (Fig. 9) are:

τRB = Ω(q, q̇, q̈) p

Ω11 = Ω21 = q̈s + q̈e, Ω12 = ceq̈e − seq̇e (2q̇s + q̇e) ,

Ω22 = ce(q̈s + q̈e) + seq̇2
s , Ω13 = 0 , Ω23 = q̈e,

p1 = Ie + me l2
m,e , p2 = me ls lm,e,

p3 = Is + ms l2
m,s + me l2

s , (11)

where ms and me are the masses of the upper arm and lower
arm respectively, ls and le the corresponding segment lengths,
lm,s and lm,e the distances to the respective centers of mass
of the segments, and Is and Ie the respective moments of
inertia.

In the experiments with human subjects, a computer-con-
trolled force was exerted on the hand during movement by a
haptic interface. The external force used in the simulations
is that produced by the robotic interface, and corresponds to
one of the force fields described in the main text of this article
plus the dynamics of this interface as modeled in Tee et al.
(2004).

The vector of muscle tensions is

m = (ms+, ms−, me+, me−, mb+, mb−)T , (12)

which consists of the muscle tension in the shoulder flexor
(ms+) and extensor (ms−), elbow flexor (me+) and exten-
sor (me−), and biarticular flexor (mb+) and extensor muscles
(mb−). These muscle tension terms are transformed into joint
torques using the Jacobian Jm(ρ), which is a matrix of con-
stants comprising the muscle moment arms ρ = (ρs+, ρs−,

ρe+, ρe−, ρbs+, ρbs−, ρbe+, ρbe−)T :

[
τs

τe

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

ρs+ 0
−ρs− 0

0 ρe+
0 −ρe−

ρbs+ ρbe−
−ρbs+ −ρbe−

⎤
⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎢⎣

ms+
ms−
me+
me−
mb+
mb−

⎤
⎥⎥⎥⎥⎥⎥⎦

. (13)

ρs+ and ρs− are the moment arms of the shoulder flexor
and extensor muscles, respectively; ρe+ and ρe− the moment
arms of elbow flexor and extensor muscles; ρbs+ and ρbs−
the moment arms of biarticular flexor and extensor muscles
around the shoulder; and ρbe+ and ρbe− their moment arms
around the elbow.

6.2 Components of muscle tension

For each muscle, we assume that the tension depends on the
motor command u, muscle length λ, and rate of change of
length λ̇:

m = m(λ, λ̇, u). (14)

Muscle tension is composed of two terms:

m = [mA + mIMP]+ , [·]+ ≡ max{·, 0}, (15)

where m A(u) is due to the motor command u, and mIMP

corresponds to mechanical impedance (the resistance to per-
turbation of the state) produced by muscle, i.e., to muscle
stiffness and damping.

Muscle impedance is modeled as

mIMP(t) = κ (e(t) + κd ė(t)), (16)

where e is the muscle stretch/shortening, κ is the muscle stiff-
ness, and κd is the ratio of muscle viscosity to stiffness. The
intrinsic stiffness κ is assumed to increase linearly with the
total motor command v (Hunter and Kearney 1982; Kirsch
et al. 1994):

κ(t) = κ0 + κ1 v(t) (17)

w represents the sum of the feedforward descending motor
command from the CNS, u, inherent motor noise, uN, and
neural feedback, v:

w = [u + uN + v]+ (18)

The overall effect of the many different sources of variance
in the command is modeled as noise in the motor command:

uN(t) = (µ0 + µ1u) µ(t), (19)

where µ(t) is 0 mean Brownian motion corresponding to the
deviation observed in Burdet et al. (2001). As described in
Eq. 2, the neural feedback or reflex term is modeled as

v(t) = r (e(t − φ) + rd ė(t − φ)) (20)
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where φ is the feedback delay. This term represents feed-
back from all the sources to the motoneuron, which can be
excitatory or inhibitory, i.e., it can be positive or negative,
respectively.

We assume that muscle tension is equal to the motor com-
mand:

m A = w = [u + uN + v]+ (21)

This simple muscle model has a small number of parameters,
whose values can be identified from the literature. We have
deliberately chosen to model force rather than activation to
avoid having to model activation dynamics. Since a num-
ber of studies have measured reflex torque, estimates can be
made of the feedback impedance parameters.

Note that while the model is linear in terms of the length–
tension relationship, it is nonlinear with respect to its
input–output relationships between command and tension.
In particular, in our model muscle, impedance increases with
activation (a feature critical for impedance control). Because
the muscle activation level depends both on the feedforward
and feedback motor commands, the tension does not depend
linearly on the command.

Update of feedforward u from trial k to k + 1 was imple-
mented using learning law Eq. 4, which we repeat here for
completeness:

uk+1(t) ≡
[
uk(t) + � uk(t + φ)

]
+ , (22)

� uk(t) = αεk+(t) + βεk−(t) − γ,

εk(t) = ek(t) + gd ėk(t) , α > β > 0, γ, gd > 0,

where �u is phase advanced by φ > 0, which is equal to the
feedback delay.

6.3 Simulation with physiological parameters

In our implementation, the change in muscle length was eval-
uated relative to a reference trajectory (Eq. 3):

e = λ − λo. (23)

This reference trajectory, λo, was computed as the mean NF
trajectory in 20 consecutive movements (Burdet et al. 2006;
Tee 2003). It was calculated in joint space and then trans-
formed into muscle space via inverse kinematics.

The kinematic parameters are based on realistic anthro-
pometric data as shown in Table 1. The moment arms are
estimates that fall within the range reported in the litera-
ture (Kuechle et al. 1997; Murray et al. 1995; Nijhof and
Kouwenhoven 2000), selected to produce feedback modifi-
cation mainly in the double joint muscles during initial trials
in the DF such as those observed in Franklin et al. (2003b):

Table 1 Anthropometric data for arm segments

Upper arm Forearm

Mass (kg) 1.93 1.52

Length (m) 0.31 0.34

Center of mass from proximal joint (m) 0.165 0.19

Mass moment of inertial (kg) 0.0141 0.0188

shoulder monoarticulars : ρs+ = ρs− = 3.0 cm

elbow monoarticulars : ρe+ = ρe− = 2.1 cm

shoulder biarticulars : ρbs+ = ρbs− = 4.4 cm

elbow biarticulars : ρbe+ = ρbe− = 3.38 cm

The noise is an additive component of the muscle ten-
sion with parameters set to emulate the movement variabil-
ity observed in the experimental data of NF movements and
initial movements in the VF and DF. It is described by

µ0 = 7, µ1 = 0.04, µ = 12.5 f (ν) (24)

where ν ∈ N (0, 1) is a normally distributed random vari-
able, and f (·) is a causal fifth-order Butterworth filter with
2Hz cut-off frequency.

The muscle impedance and feedback impedance param-
eters were selected so that the ratio of feedback to intrin-
sic contribution was between 20 and 45%, corresponding
to Carter et al. (1990). The delay parameter was assumed
to be φ = 60 ms. The ratios of damping to stiffness for the
muscle and feedback components were chosen to be κd =
1/12 s and rd = 2 s such that intrinsic muscle properties
were mainly position dependent while feedback was mainly
velocity dependent (Rack 1981). κo = 3,360 Nm−1 and κ1 =
118 m−1 were chosen to obtain stiffness ellipses and initial
trajectories in the VF that were representative of experimen-
tal results. r = 336 Nm−1 produces deviation on unantici-
pated VF trials (before effects) of similar magnitude as in the
experiments.

The results of Gomi and Osu (1998) show that control of
tension in elbow muscles mA,el and in biarticular muscles
mA,bi is linked, which we implement as

mA,el± = [uel± + uN,el± + vel±]+ + 0.3 mA,bi± (25)

where u is described in Eq. 4 and uN, v and mA in Eqs. 19–21.
Concerning the learning parameters, the ratio of the veloc-
ity- to position-dependent terms used for learning, gd = 0.2,
is set to correspond to the restoring force due to the combined
effect of intrinsic muscle properties and neural feedback. The
other parameters were chosen to achieve a steady state sim-
ilar to experimental observations in the NF. At steady state,
�u = 0 thus

αεss,+ + β εss,− = γ (26)
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Fig. 10 Sensitivity analysis. a
Stiffness ellipses after learning
in the sDF and VF while varying
the ratio of velocity to position
gain of the reflex. b Stiffness
ellipses while varying the
learning factor. c Stiffness
ellipses while varying the reflex
delay. d Stiffness ellipses while
varying the ratio of velocity to
position gain of the intrinsic
muscle stiffness. The shape of
the stiffness ellipses was not
modified by the variations of
parameters
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where εss denotes the steady-state muscle length error. For
simplicity, we assume that εss is equal to the mean of the two
possible values { γ

α
,

γ
β
} (see Fig. 3b), i.e., εss = 1

2 (
γ
α

+ γ
β
),

which leads to the following equation:

γ = 2 εss α β

α + β
(27)

where β = 0.7α corresponds to the data of Franklin et al.
(2003b); εss = 7.8 × 10−4 m is based on data from NF tri-
als; and α = 9800 with the corresponding γ from Eq. 27
gives the correct transient behavior in the VF of Franklin et
al. (2003b). This set of parameters was used in all the simu-
lations of this article.

6.4 Sensitivity analysis

Learning was relatively insensitive to parameters different
from the default values described above, as long as the move-
ments were stable under the NF condition (Tee 2003). The
resulting impedance had similar characteristics, as shown in
Fig. 10, for a wide range of values of the reflex delay, ratio
of velocity- to position-dependent force (from both intrin-
sic muscle properties and reflexes), and learning factors. The
impedance remains virtually unaltered by large variations of
the reflex delay. Increasing the velocity component of the
reflex or intrinsic muscle force produces a decrease in the

magnitude of the impedance. Increasing the learning factor
increases the magnitude of impedance.

6.5 Ethics statement

The experiments reported in this study were conducted
according to the principles expressed in the Declaration of
Helsinki. The study was approved by the Institutional Review
Board of ATR International. All the subjects provided writ-
ten informed consent for the collection of samples and sub-
sequent analysis.
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