
A Dedicated Binding Mechan
Current Biology 24, 780–785, March 31, 2014 ª2014 The Authors http://dx.doi.org/10.1016/j.cub.2014.02.030
Report
ism

for the Visual Control of Movement
Alexandra Reichenbach,1,* David W. Franklin,2

Peter Zatka-Haas,1 and Jörn Diedrichsen1

1Motor Control Group, Institute of Cognitive Neuroscience,
University College London, London WC1N 3AR, UK
2Computational and Biological Learning Lab,
Department of Engineering, University of Cambridge,
Cambridge CB2 1PZ, UK

Summary

The human motor system is remarkably proficient in the

online control of visually guided movements, adjusting to
changes in the visual scene within 100 ms [1–3]. This is

achieved through a set of highly automatic processes [4]
translating visual information into representations suitable

for motor control [5, 6]. For this to be accomplished, visual
information pertaining to target and hand need to be identi-

fied and linked to the appropriate internal representations
during the movement. Meanwhile, other visual information

must be filtered out, which is especially demanding in visu-
ally cluttered natural environments. If selection of relevant

sensory information for online control was achieved by
visual attention, its limited capacity [7] would substantially

constrain the efficiency of visuomotor feedback control.
Here we demonstrate that both exogenously and endoge-

nously cued attention facilitate the processing of visual
target information [8], but not of visual hand information.

Moreover, distracting visual information is more efficiently

filtered out during the extraction of hand compared to target
information. Our results therefore suggest the existence of a

dedicated visuomotor binding mechanism that links the
hand representation in visual and motor systems.
Results and Discussion

Skilled motor control demands the simultaneous processing
of different sources of visual information. For example, when
several basketball players jump for the ball at the same time,
a player must track visual information pertaining to the target
(exafference; the basketball) and the controlled limb (reaffer-
ence; one’s own hand) while ignoring distracting visual infor-
mation (e.g., other players’ hands or the background). How
does the visuomotor system accomplish this task efficiently?
In perceptual tasks, selection of relevant sensory information
is considered to be a function of attention [7]. Likewise, one
might suggest that visual attention also facilitates processing
of all relevant visual information during the control of move-
ment. Directing visual attention to the target of a reach
accelerates the initiation of the movement, and overt attention
(gaze direction) is therefore typically focused on this target
[9, 10]. Consequently, covert visual attention would have to
be allocated to themoving limbs to achieve accurate feedback
control. When one reaches with both hands to two separate
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targets simultaneously [11], for instance, this division of
resources would place high demands on a limited-capacity
visual attention system [7].
To study the role of attention in visual feedback control, we

challenged the visuomotor system with a bimanual reaching
task. Participants held a robotic manipulandum with each
hand and moved these simultaneously to two targets pre-
sented in the left and right visual fields while keeping their
eyes fixated at a central location (enforced via eye tracking).
During the task, participants’ hands were occluded by a hori-
zontally mounted monitor, which displayed the cursors and
targets (Figure 1A). The task therefore required participants
to simultaneously process visual information from two targets
and two cursors. To test whether spatial visual attention influ-
ences the processing of visual target and hand information
during online control, we manipulated the locus of attention
via exogenous cuing. Immediately after the onset of the move-
ment, covert attention was attracted by briefly increasing the
luminance [13] of a target or cursor (‘‘flashes’’; see Figure 1A).
We assessed the influence of attention by displacing the
position of one of the targets or cursors perpendicular to
the reaching direction 100 ms after the flash [14] (Figure 1A).
The side of the displacement was independent of the side of
the preceding attention manipulation, but it occurred always
on the same object type (target or cursor) as the attentional
cue. The displacement evoked an automatic feedback
response with the corresponding hand: rightward for target
displacements to the right and leftward for cursor displace-
ments to the right [1, 4, 15]. The forces with which participants
pushed into ‘‘force channels’’ [16] during interspersed probe
trials provided a sensitive assay of the early corrective motor
response [1].
We found fast (onsets around 165 ms) and consistent

responses to both target and cursor displacements. These
indicate that the sensorimotor system, rather than relying
exclusively on proprioceptive or efference copy information,
is exquisitely sensitive to visual feedback from the hands
[17, 18], even when it tracks both hands simultaneously. The
force response to target displacements (Figures 1B and 1D)
was modulated by the locus of attention. Displacements
preceded by the exogenous cue elicited significantly stronger
initial responses (for statistical details, see Figure 1D) and
produced earlier onsets of the correction (Figure 1E) than
uncued displacements. The size of the attentional modulation
on feedback responses was of similar magnitude as for simple
reaction time tasks [19]. In contrast, exogenous cuing did not
modulate the responses to cursor displacements (Figures
1C–1E). The interaction for displacement type (target or
cursor) 3 attention was significant for both response strength
(F1,13 = 7.129, p = 0.019) and onset (F1,13 = 10.005, p = 0.008).
To corroborate these findings, we conducted a second

experiment in which we manipulated covert attention endo-
genously using a secondary perceptual task. At the start of a
trial, we presented an arrow near fixation that pointed to the
left or right (cue validity for the perceptual task: 83%). During
the reaching movement, the luminance of one of the targets
(or, in separate blocks, the luminance of one of the cursors)
was subtly changed for 350 ms. After completing the move-
ment, participants reported whether the luminance had
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Figure 1. Exogenous Cuing of Visual Attention Influences Processing of Target, but Not Cursor, Information

(A) Visual scene during an upward bimanual reaching trial with a displacement of the left cursor (gray circle, representing left hand position) and a flash on the

right cursor. Displacements and flashes could occur on either side, i.e., the side of the flashwas uninformative for the side of displacement. The same exper-

imental manipulations (flashes and displacements) were applied in separate trials to the targets. Fixation was enforced on the central cross, which was

positioned such that target and cursor displacements occurred at the same retinal eccentricity. The lower panel shows the time course of the experimental

manipulations (flashes and displacements).

(B) Lateral forces applied in force channels in response to target displacements on attended and unattended sides. Force traces were aligned to the onset of

the displacement (time point 0ms) and flipped such that positive forces indicate a response in the expected direction (i.e., left corrective force for a rightward

cursor or leftward target displacement). Force traces were averaged across participants, and shaded areas denote 1 SEM. The solid vertical lines mark

response onset, and the dashed lines the time window over which the forces were averaged to obtain the response strength (from 30ms pre- to 70ms post-

response onset).

(C) Lateral force in response to displaced cursors analogous to (B).

(D) Average response strength around response onset. Attention had a large effect [12] (d = 0.83) on the response strength to target perturbations (t13 =

3.116, p = 0.008), but a small effect in the opposite direction (d = 20.14) on the response strength to cursor perturbations (t13 = 0.516, p = 0.614).

(E) Response onsets to visual perturbations. Attention had a medium-sized effect on target displacement (d = 0.64, t13 = 2.390, p = 0.033) and an opposite,

nonsignificant effect on cursor displacement perturbations (d = 20.56, t13 = 2.080, p = 0.058).

All error bars denote 1 SEM among participants. *p < 0.05, **p < 0.01.
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increased or decreased. During the movement, we probed
feedback control by displacing either the left or right target
(or, in separate blocks, the cursor) 100 ms before the lumi-
nance change.

Accuracy on the brightness discrimination task was better
on the cued side (F1,18 = 18.449, p < 0.001; Figure 2A), demon-
strating successful attention manipulation both for the cursor
and target conditions. Corrective motor responses to target
displacements were also significantly greater for the attended
side (Figure 2B includes statistical details). In contrast, the
response to cursor displacements was not modulated by the
cue. As in the exogenous case, the displacement type (target
or cursor) 3 attention interaction was significant (F1,18 =
5.030, p = 0.038). The time of response onsets revealed a
similar pattern, although here the interaction did not reach sig-
nificance (Figure 2C).

These results indicate that both exogenous and endo-
genous visual attention modulate the processing of target in-
formation [9]. In contrast, the processing of visual information
about the moving limb, although fast and efficient, seemed to
be independent of either attentional manipulation. Our failure
to detect an effect of the attentional modulation on responses
to cursor perturbations is unlikely to be caused by a simple
lack of statistical power. The power for detecting an effect of
the size of the attentional modulation on responses to target
displacements was >80% with our design (82.1% and 98.7%
for experiments 1 and 2, respectively). Furthermore, the signif-
icant interaction shows that an attentional modulation effect
was clearly larger for target displacements than for cursor
displacement—if the latter was present at all. Finally, the
absence of attentional modulation on cursor displacement
responses is unlikely to be a result of a ceiling effect limiting
the size of the maximal response to cursor displacements. In
an additional control experiment (Supplemental Information
available online), we introduced visual distractors alongside
targets and cursors to reduce the size of the feedback
response. Even though the demand on visual processing
increased, additional allocation of visual attention facilitated
only target, but not cursor, processing, ruling out a ceiling
effect. We therefore suggest that the binding of reafferent
visual information about the movement to the corresponding
motor command is achieved without (or at least compared to
target processing with much less) aid of visual attention.
Therefore, we propose the existence of a separate visuomotor
binding mechanism that confers a privileged status on visual
information representing the kinematics of a moving limb.
If different mechanisms underlie attentional and visuomotor

binding, they may also differ in their ability to filter out and
ignore distracting objects. Due to the limited capacity of visual
attention [7], filtering constitutes a problem in complex natural



Figure 2. Endogenous Cuing of Visual Attention Influences Processing of Target, but Not Cursor, Information

(A) Sensitivity (d0) to distinguish between brightness increases and decreases during the perception task for nonchannel trials (50% of trials), depending on

whether the change occurred on the cued (attended) or noncued (not attended) side.

(B) Average response strength in the force channels around response onset. Attention had a large effect (d = 1.02) on response strength to target pertur-

bations (t18 = 4.43, p < 0.001), but only a small (d = 0.16) and insignificant (t13 = 0.69, p > 0.5) effect on the response strength to cursor perturbations.

(C) Response onsets to the visual perturbations. The statistical interaction test failed to reach significance (F1,18 = 0.919, p = 0.350).

All error bars denote 1 SEM among participants. *p < 0.05, ***p < 0.001.
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scenes. When reaching in such a cluttered environment, the
visuomotor system faces the same challenge. To test for
differences between attentional and visuomotor binding, we
conducted a unimanual reaching experiment requiring partic-
ipants to filter out numerous distracting objects. In order to
match perceptual difficulty for the filtering of target and hand
information, we presented a target that moved toward the
starting position (Figure 3A; Supplemental Experimental Pro-
cedures), and participants were instructed to intercept the
target with a movement of their right hand while maintaining
central fixation (Figure 3A). Between zero and four distractors
moved alongside the target and the cursor (the number of
distractors matched for the target and the cursor). The target,
target distractors, and cursor distractors followed a minimum
jerk trajectory, with the onset and speed drawn randomly from
the distribution of participants’ own reachingmovements (Fig-
ure 3B). Given that fixation was tightly controlled, the visual in-
formation pertaining to target and hand were very closely
matched.

With no distractors, responses to cursor displacements
were 32% smaller than responses to target displacements
(0.57 N versus 0.39 N; Figure 3E), most likely because hand
estimates integrate both visual information (indicating a
displacement) and proprioceptive information (indicating no
displacement) [20]. Although responses to both target (Fig-
ure 3C) and cursor (Figure 3D) displacements decreased with
increasing number of distractors, the response to target dis-
placements declined much more rapidly (interaction: F3,27 =
8.571, p < 0.001; Figure 3E). Participants also showed
small erroneous responses to distractor displacements.
These, however, were not significantly different between
perturbation conditions (main effect perturbation [target or
cursor]: F1,9 = 0.041, p = 0.844; interaction: F2,18 = 0.079, p =
0.924; Figure 3E, light-blue and orange lines).

The differential performance in filtering was especially
apparent after we accounted baseline responsiveness differ-
ences by normalizing the data in the distractor conditions to
the corresponding data without distractors (Figure 3F). When
distractors were introduced, we observed that the normalized
response strength for cursor displacements remained signifi-
cantly higher than did responses to target displacements
(F1,9 = 19.968, p = 0.002; Figure 3F, bold lines). Interestingly,
the difference in the filtering properties for target and cursor
information was especially pronounced in the very early phase
of the response (F1,9 = 25.843, p < 0.001; Figure 3F, thin lines).
When averaged over the first 140–170 ms, the response to
a cursor perturbation with up to two distractors did not decline
from the level of response without distractors (t9 < 0.44,
p > 0.2).
These results demonstrate that responses to cursor dis-

placements are more robust against the presence of distract-
ing objects than responses to target displacements. This
dissociation further supports the existence of an attention-
independent visuomotor binding mechanism that extracts
visual information about the body. The difference in filtering
efficiency can only be attributed to different processing mech-
anisms because we carefully matched low-level visual charac-
teristics such as motion energy, visual hemifield, and visual
eccentricity. Our result with four distractors also shows that
even the filtering through visuomotor binding is resource
limited—but taken together, the results indicate that these
resource limitations are different from those imposed by atten-
tional processes.
A dedicated visuomotor binding mechanism during volun-

tary movements would explain the efficiency and speed with
which humans can execute multiple goal-directedmovements
at the same time [11]. This is not because visuomotor binding
provides faster responses than other processes, but because
its independence of visual attention frees those limited
resources for allocating them to the current target during
reaching [9] and to potential alternative targets or interfering
objects [8]. Why the brain has developed a specialized mech-
anism for processing reafferent visual information, instead of
relying on the general-purpose mechanisms of attention, re-
mains to be answered by future research. We can only specu-
late that the necessity to react very rapidly to divergent visual
information about both the target and the hand has been
evolutionary important enough to justify the development of
a specialized mechanism. While attention is already involved
in the detection and selection of targets before movement
onset [8, 9], it seems sensible that it should retain this function
during online control, supporting the flexibility of the visuomo-
tor system to adjust movement goals midreach. In contrast,
the effector is rarely changed within a movement, and visuo-
motor binding heavily depends on efference copy and propri-
oceptive information. These special characteristics may have
further promoted the emergence of a dedicated process.
Note that we are not claiming that processing of the target

during the online control of movement is conscious or volun-
tary. On the contrary, there is substantial evidence that online



Figure 3. Distractors in Cluttered Visual Displays

Interfere More with Target Than with Cursor

Processing

(A) Visual scene during an upward unimanual

reaching trial with two distractors and a displace-

ment of the cursor (red circle, representing right

hand position). The target and cursor were

marked red before the trial started. Zero, one,

two (depicted), or four distractors were located

at random positions around the cursor and

target. The target and the distractors moved

with a similar velocity as the cursor, such that

the target was intercepted around the height of

the fixation cross. Fixation was enforced on the

central cross. The target, the cursor, or a distrac-

tor was displaced at each trial.

(B) Example of velocity profiles for the cursor,

target, and their accompanying distractors. The

target and distractors moved with a minimum

jerk velocity profile, with reaction and movement

times sampled randomly from the participant’s

reaction time and movement time distributions.

The average correlation between velocity profiles

of distractors with velocity profiles of the cursor

or target was r = 0.73 6 0.01.

(C) Lateral forces applied in force channels in

response to target displacements for all distrac-

tor conditions. Conventions are analogous to Fig-

ure 1. The solid vertical lines mark the response

onset for the no-distractor condition, and the

dashed lines the time window over which the

forces were averaged to obtain the response

strength (from 30 ms pre- to 70 ms postresponse

onset).

(D) Lateral force in response to displaced cursors

analogous to (C).

(E) Average response strength around response

onset as a function of displacement type (target

or cursor) and number of distractors. The erro-

neous responses to distractor displacements

appear in light blue (target distractors) and

orange (cursor distractors).

(F) Response strength normalized to the no-

distractor conditions to account for baseline dif-

ferences in the responsiveness to target and

cursor perturbations [20]. Thin lines indicate a small time window confined to the immediate time around the response onset (from 10ms pre- to 20ms post-

response onset).

All error bars denote 1 SEM among participants. The black asterisks indicate significant differences between cursor and target displacements in the longer

time window, the gray asterisks in the shorter time window. *p < 0.05, **p < 0.01, ***p < 0.001.
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corrections to target displacements can bypass voluntary
control [4, 21] and even occur without conscious awareness
[15]. The same has been shown for processing of visual hand
information [1, 20]. What we show here is that this automatic
target processing can be facilitated by the allocation of visual
attention—whereas the processing of hand information
cannot. Thus, our results demonstrate that even though
processing of visual target and hand information share some
features regarding their automatic and involuntary nature,
the processing of visual hand information appears to occur
through a dedicated channel that is uninfluenced by the alloca-
tion of visual attention.

We suggest that the visuomotor bindingmechanism detects
spatiotemporal correlation between objects in the visual scene
and internal state estimates of moving limbs. This internal
estimate is informed by proprioceptive information, and the
predictions arising from a forward model through an efference
copy [22] of the executed motor commands [23–25]. Visuomo-
tor binding is complicated by the fact that the spatial relation-
ship between movement and visual consequences is often
highly task dependent. However, the ease with which we
handle tools [26] or remotely controlled objects such as com-
puter cursors [27] suggests that it is a highly flexible process
that can learn new mappings between motor commands and
visual outcomes. The factors influencing these adaptive
processes and their relationship to the adaptation of dynamic
forward models [28], however, have yet to be elucidated.
Assignment of visual input to one’s own action has been

debated extensively as ‘‘intention or action attribution’’ or
‘‘agency’’ in the context of conscious perception [29, 30].
These studies show that sensory events judged to be conse-
quences of one’s own actions are perceived differently from
sensory events judged to arise from external causes [31–33].
Our results emphasize that the detection of visual stimuli
pertaining to our own movements is a fundamental process
for the online control of reachingmovements. The link between
actions and visual consequences allows the motor system to
respond rapidly to visual feedback signaling reach errors,
even in the face of potentially distracting visual information
as present in naturalistic visual scenes. Visuomotor binding
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is most likely a phylogenetically old mechanism common to all
species that rely on vision for movement guidance. It must
therefore constitute a central concept in theories of visuomo-
tor feedback control. Indeed, it is possible that this process
forms the basis uponwhich the percept of a ‘‘sense of agency’’
is founded.

The proposal of a dedicated mechanism raises the question
of how visuomotor binding is implemented in the nervous
system. Visual attention arises through top-down influences
of parietal and prefrontal areas onto sensory regions, in-
creasing signal-to-noise in these regions through an increase
in sensitivity and contrast gain of relevant neurons [34–37].
Visuomotor binding could act through a conceptually similar
yet independently implemented mechanism. For example,
one may hypothesize that the link is established by neural
synchronization between sensory areas and corresponding
motor cortical regions [38] or upstream premotor and parietal
regions coding visual space near the hand [39]. Sudden sen-
sory changeswould then be directly transmitted to the respec-
tive motor circuits for rapid feedback control.

While more work remains to be done to further characterize
the proposed mechanisms behaviorally and shed light on its
neural implementation, our current results provide the first
strong evidence for the existence of a visuomotor binding
mechanism that is dissociable from general visual attention.
This specialized mechanism constitutes the connecting link
between sensory and motor systems by providing a privileged
channel for reafferent visual information.

Experimental Procedures

Further details about the experimental procedures and the control experi-

ment are described in the Supplemental Information.

Supplemental Information

Supplemental Information includes Supplemental Experimental Procedures

and one figure and can be found with this article online at http://dx.doi.org/

10.1016/j.cub.2014.02.030.
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