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Follow the force: Haptic communication enhances
coordination in physical Human-Robot interaction

when humans are followers
Yiming Liu1, Raz Leib1 and David W. Franklin1,2,3

Abstract—To enhance the integration of robots into daily
human life and industrial settings, there is a growing focus on
the development of robots capable of physical collaboration with
humans. Studies have shown that haptic feedback serves as an
essential channel of communication that allows humans to better
collaborate with each other. In this study, we investigated the role
of haptic communication in physical Human-Robot Interaction
(pHRI) tasks, especially in the leader-follower role distribution.
We have shown that participants adopted different roles when
working with different agents. Haptic feedback promotes a
more balanced role distribution between leaders and followers.
Moreover, haptic feedback only improved coordination between
humans and artificial agents when humans acted as followers.
Our findings can potentially enhance robots’ ability to anticipate
human adaptation and improve their understanding of humans
through haptic communication.

Index Terms—Physical Human-Robot Interaction, Modeling
and Simulating Humans, Human-Centered Robotics

I. INTRODUCTION

IN collaborative tasks between humans and robots, robots
provide many benefits that allow us to achieve better

task performance. When collaborating, robots can handle
physically demanding and dangerous tasks, while humans
can focus on dexterous and decision-making responsibilities.
However, such collaborations are more scarce in delicate tasks
such as surgical procedures. To have robots cooperate with
humans in tasks requiring fine movements or delicate object
manipulation, we need transparent collaboration with a high
level of mutual understanding between the two sides.

To achieve such transparent collaboration [1], [2], previous
studies focused on intent detection [3]–[5], role arbitration [6]–
[8], communication [9], [10] and personalized strategies [11],
[12]. While most studies have predominantly concentrated
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on robot-to-human adaptation, limited literature explores the
complementary aspect of adaptation: human-to-robot adapta-
tion [13]. The lack of understanding of how humans adapt to
different robot behaviors hinders robots from predicting hu-
man actions, which restricts transparent collaboration between
humans and robots.

Transparent collaboration relies on the quality and reliability
of sensory information shared by both parties. Agents can
effectively coordinate their actions through a combination of
explicit communication, such as verbal communication, and
implicit communication, such as haptic communication [14].
Over the past two decades, studies on human-human collabo-
ration have demonstrated that haptic communication is a rich
and nuanced form of communication that facilitates physical
collaboration [2], [6], [15]–[17]. Furthermore, through haptic
communication, humans often develop into different roles dur-
ing collaboration, such as active leaders and passive followers
[13], [18]–[20]. However, some key knowledge about the
mechanism by which humans utilize haptic communication re-
mains unclear, which limits the application of these findings in
the field of pHRI. First, the majority of studies explored simple
tasks such as tracking a moving cursor [15]–[17] or reaching
for a target [19], raising questions about the applicability of
these findings to more complex object manipulation tasks that
demand greater coordination. Second, the studies can typically
only observe the overall impact of haptic communication on
the two agents involved. Due to the mutual adaptation between
both agents, quantifying the specific changes experienced by
each agent becomes challenging. As a result, it remains unclear
whether agents in different roles utilize haptic information in
similar or distinct ways.

To fill this gap, we designed an experiment where partic-
ipants needed to collaborate closely with different artificial
agents to control a board from both sides and roll the ball
on it to the target position. Two different types of artificial
agents were employed, with with variations in the level of
leadership displayed. We aimed to examine how humans adapt
to distinct robotic behaviors and how haptic communication
impacts coordination when the human participant assumes
either a leader or a follower role. Based on previous works on
the taxonomy of interactive behaviors [21], we hypothesize
that humans will adapt their level of leadership in response
to the behavior of the artificial agent. This adaptation aims to
optimize the trade-off between minimizing errors and minimiz-
ing effort. Additionally, we propose that leaders and followers
demonstrate distinctive patterns in their utilization of haptic
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Fig. 1. The experimental setup. A) The bimanual experimental setup. B)
The dyadic experimental setup. The participant in the dyadic blocks only
controlled the left side of the board, while an artificial agent controlled the
right side. C) The dynamics of the virtual experiment model. Participants
controlled the board via a spring-damper system, and the center of the board
was attached to the origin of the world coordinate by a spring. D) An example
of the experiment protocol. The order of the dyadic blocks was randomized
for each participant.

communication.

II. MATERIALS AND METHODS

A. Participants

Eleven right-handed participants (19-39 years of age, seven
females, handedness assessed using the Edinburgh Inventory
[22]) participated in the study after providing written informed
consent. All participants were neurologically healthy and were
naive to the purpose of the study. The study was approved
by the institutional ethics committee at TUM. Before the
experiment, participants were introduced to and familiarized
with the haptic devices. Five participants had used these
devices in previous experiments.

B. Experimental apparatus

Participants sat in front of a screen and grasped the handles
of robotic haptic devices (Phantom Touch, 3D SYSTEMS).
The task was to control the rotation and vertical position of
a board to slide a ball into a target area. In the bimanual
condition, participants held one robotic device in each hand
and used both hands to control the two sides of the board (Fig.
1A). In the dyadic condition, participants only held one haptic
device with their dominant hand and only controlled the left
side of the board (Fig. 1B). The right side was controlled by
an artificial agent. The experiment was conducted in a virtual
reality environment rendered by Chai3D [23].

The dimensions of each part of the board-ball model are
marked in Fig. 1C. The center of the board was not spatially
fixed in the virtual environment but connected to the origin
of the environment by a virtual spring. This spring generated
force feedback according to the deviation of the center of
the board. This provided participants with haptic information
regarding the partner’s position. The spring’s stiffness was
configured to enable unrestricted movement for both sides
without being constricted by the partner. The positive direc-
tions of the x, y, and z coordinates are perpendicular to the
screen to the outside, to the right, and to the top, respectively
(Fig. 1C). The agents manipulated the z-coordinates of the
control points of the board by exerting forces through spring-
damper mechanisms. The hand movement was restricted by
the program to the vertical direction. The board’s movement
was limited to translation along the z-axis and rotation around
the x-axis. The ball could only move along the long side of the
board. The target area can be in one of two possible positions,
switching between them for each trial.

C. Design of the artificial agent

The goal of this experiment was to examine the role
adaptation of humans to artificial agents during an object
manipulation task. For this reason, the artificial agent side was
designed as a non-adaptive PD controller. The position of the
artificial agent was controlled as follows:

ẑR = kbp (xball − xt) + kbv ẋball (1)
żR = kv (ẑR − zR) (2)

where ẑR is the desired position of the artificial agent and zR
is the actual position. xball and xt are the relative positions of
the ball and the center of the target area along the long side
of the board. kv = 5 was empirically selected to ensure that
the velocity of the artificial agents and the participants were
within a similar range.

We designed two types of artificial agents: the high-gain
(HG) and the low-gain (LG) agent. For the HG agent, kbp =
kbv = 0.18. For the LG agent, kbp = kbv = 0.03. The values
were selected based on our previous experiment [24], such
that the HG agent is more active and the LG agent is more
passive than most participants. Since participants required time
to react after the start of each trial, the artificial agent remained
stationary for 0.6 seconds at the start of a trial.

D. Experimental paradigm

Each trial started with the ball fixed at the center of one
target area. Participants were given auditory and visual cues
to start controlling the board, aiming to move the ball and
stabilize it in the opposite target area. The trial was completed
when the ball remained in the target area for 1.5 seconds.
Participants were then required to keep the board horizontal
until the next trial started. At this point, the target area
switched to the opposite side to start the next trial. If the ball
fell off the edge of the board, the trial would be marked as
failed and was repeated. Participants could see the completion
time after each trial and were encouraged to complete the trials
as fast as possible.
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Each participant performed ten experimental blocks. Each
block consisted of 60 successful trials with the same exper-
imental condition. The first two blocks included bimanual
manipulation with haptic feedback that served to familiarize
the participants with the task. The remaining eight blocks
were all dyadic experiments, with participants controlling the
left side and the artificial agent controlling the right side
of the board. In each block, we implemented one type of
artificial agent (HG or LG) and either provided or blocked
haptic feedback totaling to four different block types. For the
blocks with haptic feedback, the participant could feel the
force through the haptic device. The haptic device generated
no forces in blocks without haptic feedback.

Each block type appeared twice, totaling to eight blocks.
The blocks appeared in two rounds in which we randomized
their appearance between participants. Before each block
started, participants were unaware of the condition. An ex-
ample experimental protocol is depicted in Fig. 1D.

E. Virtual board-ball model

By moving their hands, participants generated forces on the
board at the two control points. The forces were generated
according to Equation 3.

Fside = kh · (zside − zP,side) + ch · (żside − żP,side) (3)

where side = {L,R}, referring to the left (human) or right
(artificial agent) side. Fside is the generated force, zside and
zP,side are the z coordinates of the hand and the control point,
respectively. The motion of the board and the ball were
simulated as follows:

Fs = −ks zboard (4)

FL + FR −M g −m g cos2 θ + Fs = Mz̈board (5)

(FR − FL) l cos θ −m g xball cos θ = I θ̈ (6)
m ẍball = m g sin θ (7)

In these equations, Fs is the force generated by the spring
connected to the center of the board. zboard is the z coordinate
of the center of the board. θ is the board’s angle around
the x-axis with positive values marking counterclockwise
rotation. The values and meanings of the other parameters are
summarized in Table I.

Symbol Parameter Unit Value
M Weight of the board kg 0.01
m Weight of the ball kg 0.05
g Gravity acceleration m/s2 9.81
kh Force input stiffness N/m 200
ch Force input damper Ns/m 2
ks Stiffness of the spring N/m 140

l
Distance between the control

point and the center of the board m 0.25

I Moment of inertia of the board kg ·m2 0.0004
TABLE I

PARAMETERS OF THE VIRTUAL BOARD-BALL MODEL.

stationary
up
down

left hand
right hand
both stationary
single
cooperative
competitive

stationary
clockwise
counter 
clockwise
delay
(human leads)
delay
(human follows)

A

B

C

D

Fig. 2. An example of a representative trial. A, B) Velocity profile and HMM
hand movement segmentation for the left and right sides, respectively. C) Left
and right hand trajectories and the collaboration dynamics. D) Angle of the
board, the HMM board rotation segmentation, and the extracted delay between
the agents.

F. Data analysis

Kinematic and dynamic data were sampled at 1000 Hz
and low-pass filtered with a tenth-order, zero-phase-lag But-
terworth filter with a 20 Hz cutoff frequency to remove any
high-frequency noise. P values less than 0.05 were considered
statistically significant and were denoted with * (p < 0.05),
** (p < 0.01), *** (p < 0.001) and **** (p < 0.0001).

1) Completion time: Completion time was defined as the
time from the beginning of each trial to when the ball stayed
in the target area for 1.5s.

2) Movement segmentation: We observed that participants
generally controlled the board with a series of discrete move-
ments rather than continuous ones. To identify the start and
end of the movements in each trial, we performed unsuper-
vised segmentation of the velocity profile of the hand and
the board using a hidden Markov Model (HMM) [25]. For
hand movement segmentation, we trained an HMM for each
participant using the hand velocity profiles of the agents of
all trials. The HMM classified the hand movement into one
of three states: moving down, stationary, or moving up (Fig.
2A). Similarly, we trained an HMM for the rotational motion
of the board. This HMM used the angular velocity profile of
the board to predict if it is rotating clockwise, stationary, or
rotating counterclockwise (Fig. 2C).

3) Coordination: Coordination refers to the ability to work
together effectively and efficiently to achieve a common goal.
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In this study, coordination means that the two agents are
synchronized and try to rotate the board in the same direction.
We quantify the coordination by collaboration dynamics and
by delay.

a) Collaboration dynamics: Based on the results of hand
movement segmentation, each side could only be in one of
three states at each time point: Moving up, moving down, or
stationary. Consequently, there were nine possible combina-
tions of movement states between the two sides. To label the
collaboration dynamics, we grouped these nine combinations
into four categories:

• Cooperative movement: the two sides were moving in
opposite directions.

• Competitive movement: both sides were moving in the
same direction.

• Single movement: one side was moving while the other
side was not.

• Stationary: both sides were not moving.
An example of collaboration dynamics is depicted in Fig.

2B. To determine the proportion of each collaboration cate-
gory, the total time spent on each category was divided by the
completion time of the trial.

b) Delay: When both sides try to rotate the board in the
same direction, it is common for one side to start first and the
other side to follow. This time difference was defined as the
delay. Based on the results of the movement segmentation,
we calculated the delay between the participant and the
artificial agent for each board movement segment. If there is
a cooperative movement within a board movement segment,
the time from the start of this board movement segment to
the start of the cooperative movement is the delay of this
segment (see Fig. 2C). The delay is positive when the artificial
agent moves ahead of the human and negative otherwise.
Board movement segments without cooperative movement
were discarded from this analysis. The delay during the first
0.6 seconds of each trial was not considered since the artificial
agent was programmed to remain still (see Design of the
Artificial Agent). We calculated each trial’s mean absolute
delay of all the board segments. We defined the following
delay as the mean of all delays when humans followed the
artificial agent and the leading delay as the mean of all delays
when humans were leading.

4) Strategy and leader-follower relationship: We used lin-
ear models to quantify the individual strategy and contribution
of the participants and the artificial agent. In this study, the
manipulation task was shared by the two agents. The more
active and contributing agent was defined as the leader, while
the other was the follower. These roles were determined based
on the extracted control gains as follows.

a) Ball-Hand Model: We modeled the participants as
controlling the position and velocity of the ball in a linear
model, similar to a PD controller. We defined a linear model
that mapped the position and velocity of the ball to hand
positions to quantify the individual strategies.

zL = −kbpos−L ∗ (xball − xt)− kbvel−L ∗ ẋball + bb−L (8)
zR = kbpos−R ∗ (xball − xt) + kbvel−R ∗ ẋball + bb−R (9)

where kbpos-L, kbpos-R, kbvel-L, kbvel-R, bb-L and bb-R are the ball
position gain, ball velocity gain and intersection of the human
and artificial agent, respectively (Fig. 3A). Higher gains in
ball position and velocity indicate a more active strategy by
the agent.

b) Angle-Hand Model: Similarly, we used a second
linear model to map the board angles to hand positions. This
model shows the amount of movement on each side when the
board was rotated to a specific angle.

zL = −kθ−L ∗ θ + bθ−L (10)
zR = kθ−R ∗ θ + bθ−R (11)

where kθ-L, kθ-R, bθ-L and bθ-R are the gains and intersection
points of the human and artificial agent, respectively (Fig. 3B).
Due to physical limitations, the total movement of the left
and right sides in opposite directions is fixed when the board
is rotated to a specific angle without translation. Therefore,
kθ-L and kθ-R should sum to a constant value, and their
ratio indicates the relative contribution of the two agents in
controlling the board’s motion.

pθ−L = kθ−L/(kθ−L + kθ−R) (12)
pθ−R = kθ−R/(kθ−L + kθ−R) (13)

where pθ-L, pθ-R are the proportions of the angle-hand gain.
The agents with a higher proportion have a more dominant
role than their partners. Thus they are defined as the leaders,
while their partners are defined as the followers.

Comparing the movement of the human and the artificial
agent (Fig. 2A, B), we see that humans often produced discrete
movements [26], while the artificial agent generated continu-
ous movements. Therefore, we propose that the hand positions
at every time step do not indicate the participants’ desired
position. Instead, we assume that the participants arrived at
their desired position at the end of each board movement
segment. We took the θ, xball, ẋball, zL, zR at the end of each
board movement segment and used linear regression algorithm
to fit the parameters.

III. RESULTS
A. Learning effect

As participants were instructed to complete the task as
quickly as possible, completion time is an intuitive metric
for quantifying performance. Participants’ completion time
improved during the first two bimanual familiarization blocks
(Fig. 4A). In the subsequent dyadic blocks, the completion
time showed higher values at the beginning of each block, then
quickly decreased and reached a stable level as participants
adapted to the specific conditions and exhibited a consistent
level of performance. Differences in completion time across
the four conditions in dyadic blocks are shown in Fig. 4B.
A repeated measures two-way ANOVA indicated that the
interaction between the gain of the artificial agent (LG or HG)
and haptic feedback (with or without) factors was significant
(F(1,10)=8.97, p=0.013). Post-hoc paired t-tests with Bonfer-
roni correction revealed that haptic feedback did not have a
significant impact on the completion time (LG agent (t(10)=-
2.40, p=0.074), HG agent (t(10)=1.10, p=0.060)). When paired
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Fig. 3. The linear models of a typical participant. A) The ball-hand model.
The scatter points are the ball position, ball velocity, and hand position at the
end of each board movement segment. These scatter points are approximately
located on the semi-transparent plane representing the linear model. B) The
angle-hand model. The scatter points are the board angle and hand position at
the end of each board movement segment. The scatter points lie approximately
on a line representing the linear model. The upper and lower panels depict
the human and the artificial agent, respectively. The human is the leader of
this block, as indicated by the higher gain (i.e., the larger slope of the line)
compared to the artificial agent.
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Fig. 4. Completion time. A) All participants’ average completion time and
proportion of each state of collaboration dynamics. The data for the 600 trials
of 10 blocks is presented in the order in which each individual completed
them. The first 120 familiarization trials were bimanual, while the remaining
trials were dyadic. Note that the conditions experienced by each participant
during a given dyadic block may vary and were averaged together. B) The
average completion time and 95% confidence intervals of the four conditions.

with the same artificial agent, participants completed the task
in a similar amount of time regardless of whether haptic
feedback was provided.

The proportion of each category of collaboration dynamics
was color-coded in Fig. 4A. In dyadic blocks, there was an
evident increase in the proportion of competitive and single
movements, while the proportion of cooperative and stationary
behavior decreased compared to bimanual blocks. This is to
be expected, as it is more challenging to coordinate with the
partner than with one’s own two hands.

B. Leader-follower role distribution

This subsection investigates the adjustment of role distribu-
tion between participants and artificial agents and the influence
of haptic communication on this process. Since the HG agent
was designed to be much more proactive than the LG agent,

A B

Fig. 5. Ball position and velocity gains. A) Human participants. B) Artificial
agents. Participants are color-coded, and conditions involving LG and HG
agents are denoted by smaller and larger dots, respectively. The closer the
data points are to the top right of the figure, the more active the participants
are.

A B

Fig. 6. The average and 95% confidence interval of the proportion of angle-
hand gain in different artificial agent gain and haptic conditions. A) LG Agent.
B) HG Agent.

participants were expected to adapt their strategies and switch
between leader and follower roles based on the behavior of
the artificial agent.

The role distribution was initially assessed by ball position
gain and ball velocity gain (Fig. 5). Points closer to the upper
right corner represent higher gains, which indicate more active
strategies, while points near the lower left corner reflect more
passive strategies. All participants switched to a more active
strategy with the LG agent and assumed the leader role.
Conversely, they adopted a more passive strategy with the HG
agent, taking on the follower role.

The role distribution was then assessed by the proportion of
the angle-hand gain pθ-L and pθ-R (Fig. 6). The proportion of
participants’ contribution varied with the agent they interacted
with, being more than 50% with the LG agent and less than
50% with the HG agent. This again confirms their expected
role adaptation as leaders and followers. This adaptation of
role distribution was simulated by an LQG controller, as
demonstrated in Section IV.

Moreover, we observed that haptic feedback influenced the
role distribution. A repeated measures two-way ANOVA on
pθ-L indicated that the interaction between the gain of the
artificial agent and haptic feedback factors was significant
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(F(1,10)=170.20, p<0.0001). Further post-hoc paired t-tests
with Bonferroni correction showed that haptic feedback led
to a significant reduction in human’s proportion with the LG
agent (t(10)=-14.12, p<0.0001), and a significant increase
with the HG agent (t(10)=2.79, p=0.038). In both cases, the
proportion shifted towards 50% when haptic feedback was
available (Fig. 6), indicating decreased dominance in leaders
and increased activity in followers. We concluded that the
integration of haptic feedback results in a more balanced distri-
bution of responsibilities within the leader-follower dynamic.
In other words, the leader-follower relationship is reinforced
in the absence of haptic feedback.

C. Coordination between the two agents

Until now, our investigation has primarily focused on ana-
lyzing trial-level data, treating each trial as a whole. In this
section, we delved into the time series data, exploring the influ-
ence of haptic communication on the coordination between the
two agents. We hypothesized that haptic communication might
increase the level of coordination. We quantified coordination
by collaboration dynamics and delay.

As defined in Section II, collaboration dynamics were cat-
egorized into four types: cooperative, competitive, single, and
stationary. We examined the change in the proportion of each
category of collaboration dynamics when working with the LG
or HG agent with or without haptic feedback (Fig. 7A, B). We
conducted a repeated measures two-way ANOVA on each of
the four categories. The interaction between the gain of the
artificial agent and haptic feedback factors was significant for
cooperative movement (F(1, 10)=28.025, p=0.0003) and single
movement (F(1, 10)=9.98, p=0.010), but not significant for
stationary (F(1, 10)=2.737, p=0.129) or competitive movement
(F(1, 10)=1.11, p=0.318). Further post-hoc paired t-tests with
Bonferroni correction showed that, for the HG agent, haptic
feedback led to a significant increase in cooperative movement
proportion (t(10)=6.69, p=0.0001) and a significant decrease in
single movement proportion (t(10)=-3.669, p=0.009). This in-
dicated improved coordination between the participant and the
HG agent due to haptic feedback. The same trend was found
when comparing dyadic with bimanual blocks (Fig. 4), as the
coordination between one’s two hands is expected to be better
than between two agents. However, haptic feedback showed no
statistically significant impact for the LG agent (cooperative
(t(10)=-1.68, p=0.249), single (t(10)=0.057, p=1.0)).

Similarly, haptic feedback also influenced the delay between
the two agents (Fig. 7C, D). We conducted repeated-measures
two-way ANOVAs on the absolute delay, following delay,
and leading delay. The interaction between the gain of the
artificial agent and haptic feedback factors was significant
for absolute delay (F(1,10)=8.46, p=0.016) and following
delay (F(1,10)=7.09, p=0.024) but not for leading delay
(F(1,10)=0.75, p=0.408). Post-hoc paired t-tests with Bon-
ferroni correction showed that, with the HG agent, absolute
delay (t(10)=-3.00, p=0.013) and following delay (t(10)=-2.71,
p=0.022) both decreased significantly. No significant change
was observed with the LG agent (absolute delay (t(10)=-0.87,
p=0.407), following delay (t(10)=-1.96, p=0.079)). This again

A
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Fig. 7. Coordination between the two agents. A) The proportion of each
category of collaboration dynamics. B) The average and 95% confidence
interval of the proportion of each category. C) The mean absolute delay. D)
The upper part displays the following delay when the human follows the
artificial agent, while the lower part shows the leading delay when the human
leads the artificial agent. E) Change in coordination due to haptic feedback
during interaction with the LG agent. The arrows indicate the change in the
proportion of cooperative movement (x-axis) and absolute delay (y-axis) for
each participant (color-coded). Arrows pointing to the lower right indicate
improved coordination with haptic feedback, while those pointing to the upper
left show decreased coordination. F) Interaction with the HG agent.

shows that delay, especially when humans followed artificial
agents, only decreased with the HG agent but not with the LG
agent.

In Fig. 7E and F, we illustrated the change in coordination
due to haptic feedback by the two most representative factors:
the proportion of cooperative movement and absolute delay.
With the LG agent (Fig. 7E), participants exhibited small
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changes in different directions. However, most participants
shifted to the bottom right corner with the HG agent (Fig. 7F),
which shows improved coordination due to haptic feedback.
The results from collaboration dynamics and delay were
consistent: Haptic feedback improved coordination only when
humans acted as followers with the HG agent, but not when
humans acted as leaders with the LG agent.

IV. MODELING THE ROLE DISTRIBUTION USING LQG

Optimal feedback control models can well explain a broad
range of human movements [27]. In recent years, this frame-
work has been used to explain physical collaboration between
multiple agents [21], [28]. Jarrassé et al. [21] explained the
role distribution in shared control as a trade-off between min-
imizing error and minimizing effort. They simulated different
types of role distribution by adjusting the cost function. Based
on this idea, we designed an LQG controller to control the
board on the left side, with the same LG and HG agents on
the right side. By incorporating the dynamics of the artificial
agent in the state space equation of the LQG, we observed
that the controller adapted to the leader role with the LG
agent and the follower role with the HG agent, similar to
human behavior. This was achieved without any modifications
to the cost function. We used a linearized representation of the
system (Eq. 14).

ẋ = Ax+Bu

x′ =
[
xball ẋball θ θ̇ z̃board ˙̃zboard zL zR

]

A′ =



0 0 0 5chlkr−mg
I 0 5krch

M 0 5kr
1 0 0 5chlkr

I 0 5krch
M 0 5kr

0 −g 0 −2l2kh

I 0 0 0 0

0 0 1 −2l2ch
I 0 0 0 0

0 0 0 0 0
−2kh−kspring

M 0 0
0 0 0 0 1 −2ch

M 0 0

0 0 0 −khl+5chl
I 0 kh−5ch

M −5 0

0 0 0 khl−5chl
I 0 kh−5ch

M 0 −5


B′ =

[
0 0 0 − 5lch

I 0 5ch
M 5 0

]
z̃board = zboard −

(m+M)g

kspring

(14)

where u is the control output generated by the LQG controller
and z̃board is the modified z coordinate of the board in order to
linearize the system. The state-cost weighted matrix (Q) and
input-cost weighted matrix (R) are:

Q = diag{100, 100, 1, 1, 1, 1, 1, 1}, R = 7000

We added Gaussian noise to the measured states and used
a Kalman filter as a state observer to estimate the actual state
values using the noisy signals. We simulated the task with
the LQG controller for 30 trials for each of the LG and HG
agents. The average trajectory shows that the LQG controller
exhibited more active movements in a broader range when
partnered with the LG agent compared with the HG agent
(Fig. 8A, B). This was consistent with human participants
(see Fig. 8C, D as a reference). We further calculated the
ball position and velocity gain (Fig. 8E) and the proportion
of angle-hand gain (Fig. 8F). We saw a clear shift in roles

A B

C D

E F

Fig. 8. Simulating human behavior with an LQG controller. A-B) The average
trajectory of 30 trials of the left and right sides. The left side was controlled
by the LQG controller, and the right side was controlled by the LG/HG agent.
The shaded area represents the 95% confidence interval. C-D) For comparison,
the average trajectory of 30 trials, where participant p1 controlled the left side
and the LG/HG agent controlled the right side. E) the ball position gain and
ball velocity gain of the LQG simulation. F) The proportion of angle-hand
gain of the LQG simulation.

in both plots. In conclusion, the LQG controller took on
different leader/follower roles for different artificial agents in
a human-like way. This suggests that humans may adjust role
distribution in an optimal control manner.

V. DISCUSSION
In this study, we investigated a more complex task of

manipulating objects with internal degrees of freedom, which
is a further exploration toward understanding shared control.
The results of our study suggest that individuals tend to adopt
leader or follower roles based on the activity level of the arti-
ficial agent. In this process, haptic feedback promoted a more
balanced distribution of task-related responsibilities between
humans and artificial agents, whereas its absence enhanced the
leader-follower relationship, aligning with [29]. Furthermore,
we successfully disentangled the individual changes of the
collaborating agents and found that haptic communication
led to improved coordination when humans assumed follower
roles. However, no improvement in coordination was observed
when humans were leaders.

When participants collaborated with the HG agent, one
possible explanation of the observed outcome is that the
absence of haptic communication introduced challenges in
coordinating with the artificial agent due to the increased
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difficulty in inferring the artificial agent’s intentions [16].
Consequently, participants lowered their level of leadership
further, enabling the artificial agent to assume a more dominant
role in the task, thereby achieving task completion within
a comparable time. This process is similar to the shared
autonomy paradigm, where the robot can adapt its level of
autonomy based on its understanding of human behavior [30].

The different impact of haptic communication on coor-
dination, with improvements observed only when humans
assumed follower roles but not leader roles, suggests that
these roles may have different responsibilities and distinct
utilization of haptic information. The follower’s responsibility
may include maintaining coordination, whereas leaders may
primarily prioritize task performance.

Our study takes a step towards understanding human-
to-robot adaptation, which received less attention compared
to robot-to-human adaptation in pHRI. To the best of our
knowledge, our study is the first to demonstrate the different
effects of haptic communication on leaders and followers. Our
findings can potentially enhance robots’ ability to anticipate
human adaptation to different robot behaviors. Within the con-
text of human-robot collaboration, humans typically assume
leader roles while robots act as followers. Our results indicate
that haptic feedback may contain information that is not
visually observable, which allows robots to better understand
and coordinate with human leaders, thereby enhancing the
transparency of the collaboration. However, the mechanism for
utilizing this haptic information requires further exploration.
The presented task is simplified, so the extent to which our
findings can be generalized to more complex real-world tasks
remains to be determined.
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