
  

  

Abstract— The human sensorimotor control system 
generates movement by adapting and controlling the mechanics 
of the musculoskeletal system. To generate skilful movements 
the sensorimotor control system must be able to predict and 
compensate for any disturbances generated either in our own 
body or in the external environment. While stable and 
repeatable perturbations can be easily adapted through 
iterative learning, instability and unpredictability require a 
different approach: impedance control. Here I outline the 
arguments for impedance control as a fundamental process of 
human adaptation as well as describe evidence suggesting the 
manner in which such impedance can be learned in order to 
ensure the stability of the neuro-mechanical system. 

I. INTRODUCTION 

When humans interact with the world we need to be able 
to compensate for the mechanical properties of the external 
environment. Some parts of the environment are stable and 
predictable allowing them be easily learned. For example, as 
we pick up a coffee cup the forces that we need to 
compensate for are repeatable from one sip to the next. Even 
as we drink the cup of coffee, we can make predictions about 
the change in weight of the coffee. Iterative learning can 
compensate for these stable interactions, where the errors at 
one moment in time can be used to update the model of the 
external world that is used for the feedforward control [1]. 
Importantly, a stable interaction with the environment also 
means that similar motor commands will result in similar 
movements, with small perturbations and noise having little 
overall effect of the movement [2]. However, many 
interactions involve either instability or unpredictability [3]. 
For example, many cases of tool-use involve inherently 
unstable interactions [4]. When we use a screwdriver, we 
need to be able to produce enough force along the length of 
the driver to hold the screw against the wall. However, if the 
direction of this force is slightly moved outside of the base, 
for example through natural variations produced by motor 
noise, then this force will create a torque about the end of the 
screwdriver causing it to be further rotated. Equally 
problematic, however, are conditions of unpredictability. For 
example, if we are walking a dog or holding the hand of a 
small child, we cannot predict the sudden pulling in one 
direction or another as each new object grabs their attention. 
These issues of unpredictability can also be present in objects 
with inherent flexibility or internal degrees of freedom [5], 
[6] which are further affected by noise in the neural system. 
Therefore, in order to understand how the sensorimotor 
control system performs such complex tool-use tasks, we 
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need to understand how it adapts to instability and 
unpredictability.  

II. CONTROL OF IMPEDANCE 

While the sensorimotor control system cannot simply 
learn a particular pattern of feed-forward joint torques to 
compensate for either instability or unpredictability, it can 
employ impedance control. In these tasks, the controller 
relies on responses arising at multiple delays in order to 
minimize any errors that occur. The first are those 
instantaneous responses, occurring to any physical 
disturbance, produced by the mechanical properties of the 
body and muscles: the inertia of the body segments, and the 
intrinsic properties of the muscles (stiffness and damping). 
Later responses to the perturbations are produced by 
feedback responses at various delays depending on the 
circuits. As this delay increases, these responses can be 
appropriately tuned to the task [7]. However, such tuned 
feedback responses, delayed by 70ms, may be too late to 
prevent a task failure, especially in an unstable environment 
[8]. In these cases the neural feedback pathways may be 
insufficient to maintain stability. Therefore, in such situations 
the sensorimotor system tunes the mechanical properties of 
the muscles, regulating the impedance of the system to ensure 
stable control. 

Mechanical impedance is defined as the resistance to a 
displacement. In a standard lumped model of impedance, 
three main components are present: inertia, the resistance to a 
change in acceleration; damping, the resistance to a change in 
velocity; and stiffness, the resistance to a change in position. 
While the inertia can be controlled only by changing limb 
posture [9], the viscoelastic properties (stiffness and 
damping) can be controlled by changing muscle activation or 
endpoint force [10], co-activating muscles [11], changing 
limb posture [12], and modulating feedback gains [13]. It has 
been suggested that the sensorimotor system simplifies 
control by adapting the impedance of the neuromuscular 
system [9], [14]. This strategy has been supported by several 
studies demonstrating that subjects increase limb stiffness 
when reaching in unpredictable [15] or unstable 
environments [8]. 

Initial studies trying to demonstrate impedance control in 
the human limb found only global increases in stiffness with 
no control or tuning of the stiffness to the environmental 
perturbations [12]. To demonstrate that humans were able to 
modulate and tune their impedance independent of changes in 
endpoint force, subjects reached in a divergent force field in 
which instability was only present orthogonal to the direction 
of movement [8]. This force field initially perturbed the 
subject’s movements leading to large errors to either side of 
the straight reaching path to the target. However, after a 

Impedance control: Learning stability in human sensorimotor 
control* 

David W. Franklin, Member, IEEE 



  

period of adaptation subjects learned to make natural 
reaching movements in the environment. The endpoint 
stiffness was then estimated by applying position controlled 
displacements in the middle of the movement and measuring 
the resulting force compensation [16]. The endpoint stiffness 
increased only in the direction of the instability, with little or 
no changes in stiffness in the direction of movement relative 
to the stiffness in a null force field (no force field condition). 
This suggested that the sensorimotor control system was able 
to coordinate the co-activation of muscles, tuning the 
orientation of the limb stiffness to match the environmental 
instability [8] independent of changes in endpoint force [17]. 
To confirm this finding and demonstrate that we have control 
over the limb impedance, adaptation to multiple levels of 
instability perpendicular to the direction of movement was 
examined [18]. If we can modulate the endpoint stiffness then 
this adaptation should scale with the level of instability in 
order to ensure stability of the interaction. Indeed, this was 
found for all subjects after learning to move in the divergent 
force fields. The endpoint stiffness ellipse scaled with the 
level of instability, with a specific increase in the component 
in the direction of the instability, but no change in the 
orthogonal direction (Fig. 1). Moreover, the net stiffness 
(limb stiffness + stiffness of the instability) was equivalent to 
the original null field stiffness across all levels of instability, 
suggesting that the impedance was tuned to maintain a 
constant stability margin in all conditions. This illustrates the 
important balance between generating sufficient impedance 
for stability while minimizing the metabolic cost [18], [19] 
and the effect of noise [20]. 

 
Figure 1.  Endpoint stiffness of the arm after adaptation to instability in the 

horizontal direction. Mean stiffness across subjects obtained by [18]. The 
stiffness increased primarily in the direction of instability, scaling with the 

size of the external instability. There was no increase of stiffness in the 
direction of movement demonstrating that stiffness was tuned. 

Although this clearly demonstrates that the sensorimotor 
control system can change endpoint stiffness, 
musculoskeletal mechanics may limit the degree of tuning of 
the stiffness that can be achieved [21]. For example, in a 
simple two degree-of-freedom limb, there are only three sets 
of muscles that can tune the stiffness ellipse (single joint 
elbow, single joint shoulder, and biarticular muscles). 
Therefore, to investigate the degree to which the endpoint 
stiffness ellipse can be tuned directly, subjects adapted to a 
series of unstable environments, each with different 
directions of instability [22]. After learning, subjects had 
adapted the endpoint stiffness so that it was primarily 
increased in the direction of instability [22]. Moreover, the 
muscle activity associated with each instability direction 
demonstrated that the tuning of endpoint stiffness was 

achieved partially through selective co-activation of different 
muscles, each contributing to increased stiffness in different 
directions.  

III. LEARNING IMPEDANCE CONTROL 

Adaptation to novel dynamics induces both an initial 
increase in co-contraction and a change in the predictive 
force compensation [23]-[27]. If the environment is stable, 
this increased co-contraction is gradually reduced to the 
original level in the null field. However, during movements 
in unstable environments, this co-contraction continually 
increases until the movements are fully stabilized. Then, only 
gradually, does the co-contraction reduce until the final 
activity selectively controls the endpoint stiffness in the 
appropriate directions [24]. Thus it appears that the final 
tuning of the stiffness may result not only from signalled 
increases in the activation of perturbed muscles but also 
through selective tuning during the minimization (or decay) 
of co-contraction.  

Many studies have suggested that dynamic adaptation 
occurs through trial-by-trial adaptation of the internal 
representation of forces or joint torques (i.e. iterative learning 
[28]). However, this approach cannot explain adaptation to 
unstable environments [2] where impedance control is 
required. Instead an approach was proposed whereby 
optimization results from a trade-off of accuracy, stability, 
and energy minimization [29]. The algorithm itself suggests 
that the update of muscle activation occurs as a function of 
the time-varying error sequence from the last movement. 
During each movement, the current joint angle is contrasted 
with the desired joint angle to provide a time-varying (or a 
state-varying) sequence of errors. Each error measure is used 
by a V-shaped update rule to determine the change in muscle 
activation, which is shifted forward in time on the subsequent 
movement to compensate for neural delays. The V-shaped 
learning rule has a different slope for each muscle depending 
on whether the muscle is too stretched or shortened at each 
point in time (Fig. 2). Unlike many learning algorithms, a 
large error will generate an increase in the activation of both 
the agonist and antagonist muscles, whereas a small error (or 
even no error) induces a small decrease in muscle activation. 
As each muscle has different slopes depending on the 
direction of the error, this leads to an appropriate change in 
reciprocal muscle activation driving compensatory changes in 
joint torques. However large errors increase co-contraction 
directly increasing the joint stiffness and decreasing effects of 
noise and unpredictability, while small errors lead to a 
reduction in co-contraction, allowing the algorithm to 
minimize the muscle activation. Together this algorithm 
trades-off stability, metabolic cost and accuracy while 
ensuring task completion [29]. 

This learning algorithm is able to predict the time-varying 
pattern of muscle activity for each muscle during each 
movement throughout adaptation, and can adapt to both 
stable and unstable dynamics [29]. Moreover, this algorithm 
[30] was able to reproduce both the scaling of the stiffness 
ellipse with the magnitude of instability [18] and the change 
in orientation of the stiffness ellipse with the directional 
change in instability [22]. Furthermore, if the external 
dynamics requires both a change in net-force and increased 
stability [31], the algorithm learns to produce both to achieve 
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the desired movement [30]. However, the sensorimotor 
control system generalizes learning from many learned 
movements to form a single model of any one environment. 
The learning algorithm was therefore extended to multiple 
movements by generalization the model over the state space 
using a radial basis neural network mapping [32]. This 
extended model was able to replicate adaptation [33] and 
generalization [34] to a variety of stable dynamics as well as 
adapt simultaneously to instability in two different directions 
of movement [35]. This computational model of adaptation, 
relying on a simple update rule is able to explain and predict 
the changes in endpoint stiffness, force and muscle 
activation, learning to coordinate control of redundant 
muscles to perform a task while minimizing instability, 
energy and systematic error. 

 
Figure 2.  Illustration of V-shaped learning algorithm of [29]. The change 
in muscle activation for both the flexor (red) and extensor (blue) are plotted 

as a function of the kinematic error on the previous trial. These functions 
specify changes in reciprocal activation (joint torque), co-activation 

(stiffness) and reductions in muscle activation (metabolic cost). Further 
details can be found in [1], [3], [29]. 

IV. FEEDBACK MODULATION OF IMPEDANCE 

Muscular co-contraction increases joint stiffness, thereby 
producing an instantaneous response to any disturbance. 
However, this co-contraction requires energy to maintain, 
thereby increasing stability at the expense of metabolic cost. 
Another technique that the sensorimotor control system can 
exploit to maintain stability is to increase feedback gains, 
which act to increase the muscle stiffness at a delay [13]. 
Although there are conditions in which the delayed feedback 
responses would be unable to maintain the stability, many 
studies have shown increased feedback gains for postural 
tasks both in the upper and lower limbs [36]-[39]. These 
conditions of postural control often have allowable 
timescales for correction which are longer than those for 
object manipulation [40]. As this allowable time for 
correction decreases, feedback mechanisms for controlling 
impedance become less useful and direct co-contraction more 
necessary. However, several studies have provided evidence 
that the sensorimotor control system regulates feedback gains 
for impedance control even under conditions of unstable 
force field interaction [22], [41], albeit along with increased 
co-contraction. 

Modulation of feedback gains may have important 
functions that cannot be achieved by co-contraction alone. 
For example, in the two degree of freedom limb, the endpoint 
stiffness can only be modulated independently in three 
directions [22] and is governed to a large degree by the 
mechanical properties of the musculoskeletal system [21]. 
However, feedback responses are not limited by the 

properties of the muscles, as stretch of one muscle can be 
used to increase force in a different muscle through 
heteronymous reflex responses. Thus feedback gains can 
provide compensation for complex patterns of instability, for 
example increasing the anti-symmetric (rotational) stiffness 
of the arm [22] or contributing to responses in another limb 
[42], [43]. Moreover, feedback gains are not limited to stretch 
reflex responses, but can also respond to visual errors [44], 
which can enhance the endpoint stiffness of the limb at even 
longer delays  [45]. Furthermore, recent studies have shown 
that feedback gains are not simply excited or inhibited but 
can be modulated independently for different perturbation 
directions [46] or updated according to task goals [47], [48].   

V. CONCLUSION 
The extensive ability of feedback gains to modulate and 

tune the stiffness of the limbs to the environment opens up 
new questions into the mechanisms of adaptation. 
Specifically, it is important to understand the manner in 
which the sensorimotor control system learns and tunes the 
feedback responses to the external environment. Several 
papers have already demonstrated that these feedback gains 
are modulated as part of the adaptation process [26], [49], 
but as of yet we have little understanding about the process 
by which the adaptation occurs or what specific factors drive 
increases or decreases in feedback gains. Understanding the 
mechanism of feedback gain learning is critical if we wish to 
understand how humans are able to learn complex 
manipulation tasks.    
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